jueves, 10 de marzo de 2011

La palanca

La palanca es una máquina simple que tiene como función transmitir una fuerza y un desplazamiento. Está compuesta por una barra rígida que puede girar libremente alrededor de un punto de apoyo llamado fulcro.

Puede utilizarse para amplificar la fuerza mecánica que se aplica a un objeto, para incrementar su velocidad o la distancia recorrida, en respuesta a la aplicación de una fuerza.


HISTORIA
El descubrimiento de la palanca y su empleo en la vida cotidiana proviene de la época prehistórica. Su empleo cotidiano, en forma de cigoñales, está documentado desde el tercer milenio a. C. –en sellos cilíndricos de Mesopotamia– hasta nuestros días. El manuscrito más antiguo que se conserva con una mención a la palanca forma parte de la Sinagoga o Colección matemática de Pappus de Alejandría, una obra en ocho volúmenes que se estima fue escrita alrededor del año 340. Allí aparece la famosa cita de Arquímedes:
«Dadme un punto de apoyo y moveré el mundo».

Al heleno Arquímedes se le atribuye la primera formulación matemática del principio de la palanca.

FUERZAS ACTUANTES

Sobre la barra rígida que constituye una palanca actúan tres fuerzas:

    * La potencia; P: es la fuerza que aplicamos voluntariamente con el fin de obtener un resultado; ya sea manualmente o por medio de motores u otros mecanismos.
    * La resistencia; R: es la fuerza que vencemos, ejercida sobre la palanca por el cuerpo a mover. Su valor será equivalente, por el principio de acción y reacción, a la fuerza transmitida por la palanca a dicho cuerpo.
    * La fuerza de apoyo: es la ejercida por el fulcro sobre la palanca. Si no se considera el peso de la barra, será siempre igual y opuesta a la suma de las anteriores, de tal forma de mantener la palanca sin desplazarse del punto de apoyo, sobre el que rota libremente.

    * Brazo de potencia; Bp: la distancia entre el punto de aplicación de la fuerza de potencia y el punto de apoyo.
    * Brazo de resistencia; Br: distancia entre la fuerza de resistencia y el punto de apoyo.

LEY DE LA PALANCA

En física, la ley que relaciona las fuerzas de una palanca en equilibrio se expresa mediante la ecuación:

    P \times Bp = R \times Br

    Ley de la palanca: Potencia por su brazo es igual a resistencia por el suyo.

Siendo P la potencia, R la resistencia, y Bp y Br las distancias medidas desde el fulcro hasta los puntos de aplicación de P y R respectivamente, llamadas brazo de potencia y brazo de resistencia.

Si en cambio una palanca se encuentra rotando aceleradamente, como en el caso de una catapulta, para establecer la relación entre las fuerzas y las masas actuantes deberá considerarse la dinámica del movimiento en base a los principios de conservación de cantidad de movimiento y momento angular.



La polea

Una polea, es una máquina simple que sirve para transmitir una fuerza. Se trata de una rueda, generalmente maciza y acanalada en su borde, que, con el curso de una cuerda o cable que se hace pasar por el canal ("garganta"), se usa como elemento de transmisión para cambiar la dirección del movimiento en máquinas y mecanismos. Además, formando conjuntos —aparejos o polipastos— sirve para reducir la magnitud de la fuerza necesaria para mover un peso.

Según definición de Hatón de la Goupilliére, «la polea es el punto de apoyo de una cuerda que moviéndose se arrolla sobre ella sin dar una vuelta completa» actuando en uno de sus extremos la resistencia y en otro la potencia.

HISTORIA
La única nota histórica sobre su uso se debe a Plutarco, quien en su obra Vidas paralelas (c. 100 a. C.) relata que Arquímedes, en carta al rey Hierón de Siracusa, a quien lo unía gran amistad, afirmó que con una fuerza dada podía mover cualquier peso e incluso se jactó de que si existiera otra Tierra yendo a ella podría mover ésta. Hierón, asombrado, solicitó a Arquímedes que realizara una demostración. Acordaron que el objeto a mover fuera un barco de la armada del rey, ya que Hierón creía que éste no podría sacarse de la dársena y llevarse a dique seco sin el empleo de un gran esfuerzo y numerosos hombres. Según relata Plutarco, tras cargar el barco con muchos pasajeros y con las bodegas repletas, Arquímedes se sentó a cierta distancia y tirando de la cuerda alzó sin gran esfuerzo el barco, sacándolo del agua tan derecho y estable como si aún permaneciera en el mar.

DESIGNACIÓN Y TIPOS
Los elementos constitutivos de una polea son la rueda o polea propiamente dicha, en cuya circunferencia (llanta) suele haber una acanaladura denominada "garganta" o "cajera" cuya forma se ajusta a la de la cuerda a fin de guiarla; las "armas", armadura en forma de U invertida o rectangular que la rodea completamente y en cuyo extremo superior monta un gancho por el que se suspende el conjunto, y el "eje", que puede ser fijo si está unido a las armas estando la polea atravesada por él ("poleas de ojo"), o móvil si es solidario a la polea ("poleas de eje"). Cuando, formando parte de un sistema de transmisión, la polea gira libremente sobre su eje, se denomina "loca".

Según su desplazamiento las poleas se clasifican en "fijas", aquellas cuyas armas se suspenden de un punto fijo (la estructura del edificio) y, por lo tanto, no sufren movimiento de traslación alguno cuando se emplean, y "móviles", que son aquellas en las que un extremo de la cuerda se suspende de un punto fijo y que durante su funcionamiento se desplazan, en general, verticalmente.

Cuando la polea obra independientemente se denomina "simple", mientras que cuando se encuentra reunida con otras formando un sistema recibe la denominación de "combinada" o "compuesta".

martes, 14 de diciembre de 2010

El Aluminio.

EL ALUMINIO.
El aluminio es un elemento químico, de símbolo Al y número atómico 13. Se trata de un metal no ferromagnético. Es el tercer elemento más común encontrado en la corteza terrestre. Los compuestos de aluminio forman el 8% de la corteza de la tierra y se encuentran presentes en la mayoría de las rocas, de la vegetación y de los animales.[1] En estado natural se encuentra en muchos silicatos (feldespatos, plagioclasas y micas). Como metal se extrae únicamente del mineral conocido con el nombre de bauxita, por transformación primero en alúmina mediante el proceso Bayer y a continuación en aluminio metálico mediante electrólisis.
Este metal posee una combinación de propiedades que lo hacen muy útil en ingeniería mecánica, tales como su baja densidad (2.700 kg/m3) y su alta resistencia a la corrosión. Mediante aleaciones adecuadas se puede aumentar sensiblemente su resistencia mecánica (hasta los 690 MPa). Es buen conductor de la electricidad y del calor, se mecaniza con facilidad y es relativamente barato. Por todo ello es desde mediados del siglo XX[2] el metal que más se utiliza después del acero.
Fue aislado por primera vez en 1825 por el físico danés H. C. Oersted. El principal inconveniente para su obtención reside en la elevada cantidad de energía eléctrica que requiere su producción. Este problema se compensa por su bajo coste de reciclado, su dilatada vida útil y la estabilidad de su precio.


CARACTERÍSTICAS QUÍMICAS
Debido a su elevado estado de oxidación se forma rápidamente al aire una fina capa superficial de óxido de aluminio (Alúmina Al2O3) impermeable y adherente que detiene el proceso de oxidación, lo que le proporciona resistencia a la corrosión y durabilidad. Esta capa protectora, de color gris mate, puede ser ampliada por electrólisis en presencia de oxalatos. Ciertas aleaciones de alta dureza presentan problemas graves de corrosión intercristalina.
El aluminio tiene características anfóteras. Esto significa que se disuelve tanto en ácidos (formando sales de aluminio) como en bases fuertes (formando aluminatos con el anión [Al (OH)4]-) liberando hidrógeno.
La capa de óxido formada sobre el aluminio se puede disolver en ácido cítrico formando citrato de aluminio.
El principal y casi único estado de oxidación del aluminio es +III como es de esperarse por sus tres electrones en la capa de valencia (Véase también: metal pesado, electrólisis).
El aluminio reacciona con facilidad con HCl, NaOH, ácido perclórico, pero en general resiste la corrosión debido al óxido. Sin embargo cuando hay iones Cu2+ y Cl- su pasivación desaparece y es muy reactivo.
Los alquilaluminios, usados en la polimerización del etileno,[6] son tan reactivos que destruyen el tejido humano y producen reacciones exotérmicas violentas al contacto del aire y del agua.[7]
El óxido de aluminio es tan estable que se utiliza para obtener otros metales a partir de sus óxidos (cromo, manganeso, etc.) por el proceso aluminotérmico.




Estructura atómica del aluminio.


COMPUESTOS DEL ALUMINIO
Compuestos no metálicos de aluminio
El óxido de aluminio, también llamado alúmina, (Al2O3) es un producto intermedio de la obtención de aluminio a partir de la bauxita. Se utiliza como revestimiento de protección y como adsorbente para purificar productos químicos. El óxido de aluminio cristalino se llama corindón y se utiliza principalmente como abrasivo. El corindón transparente se llama rubí cuando es rojo y zafiro en los otros casos, utilizándose en joyería y en los emisores de rayos láser. El rubí y el zafiro también pueden ser producidos artificialmente.[9]
Los haluros de aluminio tienen características de ácido Lewis y son utilizados como tales como catalizadores o reactivos auxiliares. En particular, el cloruro de aluminio (AlCl3) se emplea en la producción de pinturas y caucho sintético así como en el refino de petróleo.
Los aluminosilicatos son una clase importante de minerales. Forman parte de las arcillas y son la base de muchas cerámicas y vidrios. En vidrios y cerámicas también se utilizan óxidos de aluminio y el borato de aluminio (Al2O3 · B2O3).
El hidróxido de aluminio (Al (OH)3) se emplea como antiácido, como mordiente, en tratamiento de aguas, en la producción de cerámica y vidrio y en la impermeabilización de tejidos.
Los hidruros complejos de aluminio son reductores valiosos en síntesis orgánica.
El sulfato de aluminio (Al2(SO4)3) y el sulfato de amonio y aluminio (Al (NH4)(SO4)2) se emplean como modiente el tratamiento en el tratamiento de aguas, en la producción de papel, como aditivo alimentario y en el curtido del cuero.[10]
El fosfato de aluminio (AlPO4) se utiliza, junto con otras materias, como deshidratante a alta temperatura.
El borohidruro de aluminio (Al (BH4)3) se añade como aditivo a los combustibles de aviones de reacción.
Las sales de aluminio de los ácidos grasos (por ejemplo el estearato de aluminio) forman parte de la formulación del napalm.
En muchas vacunas, ciertas sales de aluminio realizan la función de adyuvante inmune para ayudar a la proteína de la vacuna a adquirir suficiente potencia para estimular al sistema inmunitario.
El Al (CH2CH3)3 arde violentamente al aire y destruye rápidamente los tejidos.

El polipropileno.

POLIPROPILENO
El polipropileno es un termoplástico semicristalino, que se produce polimerizando propileno en presencia de un catalizador estereo específico.
El polipropileno tiene múltiples aplicaciones, por lo que es considerado como uno de los productos termoplásticos de mayor desarrollo en el futuro.
Es un producto inerte, totalmente reciclable, su incineración no tiene ningún efecto contaminante, y su tecnología de producción es la de menor impacto ambiental. Esta es una característica atractiva frente a materiales alternativos.

DESCUBRIMIENTO DEL POLIPROPILENO
La polimerización catalítica del propileno fue descubierta por el italiano Giulio Natta en 1954 y marcó un notable hito tanto por su interés científico, como por sus importantes aplicaciones en el ámbito industrial. Empleando catalizadores selectivos, se obtuvo un polímero cristalino formado por la alineación ordenada de moléculas de propileno monómero. Los altos rendimientos de reacción permitieron su rápida explotación comercial. Aunque el polipropileno fue dado a conocer a través de patentes y publicaciones en 1954, su desarrollo comercial comenzó en 1957 y fue debido a la empresa italiana Montecatini. Pocos años más tarde, otras empresas, entre ellas I.C.I. y Shell fabricaban también dicha poliolefina.
Este descubrimiento impulsó la investigación de los sistemas catalíticos estereoespecíficos para la polimerización de olefinas y le otorgó a Natta, junto al alemán Karl Ziegler, el premio Nobel de química en 1963.

ESTRUCTURA DEL POLIPROPILENO
Estructuralmente es un polímero vinílico, similar al polietileno, sólo que uno de los carbonos de la unidad monomérica tiene unido un grupo metilo.
El polipropileno fabricado de manera industrial es un polímero lineal, cuya espina dorsal es una cadena de hidrocarburos saturados. Cada dos átomos de carbono de esta cadena principal, se encuentra ramificado un grupo metilo (CH3). Esto permite distinguir tres formas isómeras del polipropileno:
Isotáctica
Isotáctica
Sindiotáctica
Sindiotáctica
Atáctica
Atáctica
Estas se diferencian por la posición de los grupos metilo-CH3 con respecto a la estructura espacial de la cadena del polímero.

martes, 30 de noviembre de 2010

La Madera

La madera se compone de lignina, agua, resina, sales minerales y celulosa en distintas proporciones según el tipo de madera.
Si realizamos un corte transversal en un arbol observaremos cinco partes diferentes: La médula, el duramen, la albura, el líber, y la corteza.
En su crecimiento, el arbol crece formando anillos de células bien diferenciados llamados anillos de crecimiento, con los que normalmente podremos contar la edad del arbol en climas templados donde se producen en primavera y verano de cada año.


Sus propiedades son las siguientes:

La dureza: Resistencia a la penetración por otros cuerpos(tornillos, clavos, sierras ect..) Esta dureza dependerá de ña cohesión de las fibras que la componen. Las maderas de tipo fibroso son mas duras que las porosas.

La flexibilidad: Capacidad para ser doblada sin romperse en el sentido de sus fibras.

La higroscopicidad :Capacidad de absorber o desprender humedad. Esta propiedad afecta en gran medida a su peso y volumen.

El color y el Avetado : Características de tipo visual que influyen es la elección para trabajos o decoracion dando características bellas a la madera.

La resistencia mecánica: Agrupamos en esta descripcioón las caracteristicas de la madera para soportar esfuerzos de compresión, flexión, tracción, torsión, cizalladura, dependiendo en todo caso de las fibras de la madera con respecto a la fuerzas que en ellas se aplica.


La facilidad de pulido :Directamente relacionada con la dureza ya que mientras más dura es la madera más facilidad es su pulido. Esta facilidad es importante para acabados superficiales.

martes, 26 de octubre de 2010

Presentación.

Hola somos dos alumnas del CEPA Rivas, nos llamamos Inés y Ainhoa.
Tenemos 17 y 18 años, estamos en el nivel 1 tarde.